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Abstract—The two-dimensional problem of an elliptic hole in a solid of general anisotropy subject
to an arbitrarily prescribed traction on the hole surface is studied. Stroh’s complex formalism is
adopted here but real-form solutions are obtained for the displacement and the hoop stress around
the hole. For an arbitrarily prescribed traction. the solutions are in the form of an infinite series.
However, through the use of a conjugate function they can be expressed in closed form directly in
terms of the applied traction. We also consider an elliptic rigid inclusion subject to a force and a
torque. Again, real-form solutions are obtained for the interfuce stress, the hoop stress around the
rigid inclusion and the rotation of the rigid inclusion. When there is no torque applied at the
inclusion, the traction vector at the surface of the rigid inclusion is in the direction of the applied
force und is a constant when the ellipse is a circle. This is an unexpected result since the material
surrounding the rigid inclusion is of general anisotropy.

I. INTRODUCTION

The problem of determining the stress distribution in a solid due to the presence of a hole
or an inclusion has been a mathematically interesting and challenging problem. It is also
an important problem in applications. A brief account of the history of rescarch on the
subject was given by Hwu and Ting (1989). The problem is particularly difficult to solve
when the material is anisotropic. Among several formulations for anisotropic clasticity,
Stroh’s formalism (Stroh, 1958, 1962) hus been proved to be powertul and elegant in solving
two-dimensional problems (Barnett and Lothe, 1973, 1974, 1975, 1985 Asaro er al., 1973 ;
Chadwick and Smith, 1977). Recent advances in the theory allow us to present certain
aspeets of the solutions in a real form (Kirchner and Lothe, 1987; Ting, 1986, 19884, b;
Chadwick, 1989 ; Hwu and Ting, 1990 Li and Ting, 1989 ; Qu and Li, 1991 : Suo, 1990).

The problem of an elliptic inclusion in a solid of gencral anisotropy subject to a uniform
loading at infinity was studied by Hwu and Ting (1989), in which the inclusion can be a
void, a rigid inclusion or an anisotropic elastic material different from the matrix. For the
elliptic inclusion, real-form solutions are obtained for the stress inside the inclusion and
around the interface boundary on the matrix. For the elliptic hole and elliptic rigid inclusion,
real-form solutions are obtained for the hoop stress around the hole and the rotation of
the rigid inclusion.

The present paper studies an elliptic hole subject to an arbitrarily prescribed traction
on its surface and an elliptic rigid inclusion subject to a concentrated force and a torque.
New derivations are presented which enable us to obtain the solutions in a simpler form.
In Section 2, Stroh’s formalism for two-dimensional anisotropic elasticity is outlined. Of
the several different notations found in the literature, we follow the notation employed in
Ting (1986). Some fundamental solutions which are needed in the present problem are
presented in Section 3, and real-form solutions of these fundamental solutions along the
hole boundary arc derived in Section 4. [n Section 5, we consider the problem of an elliptic
hole subject to an arbitrarily prescribed traction on the surface of the hole. For certain
special tractions, the hoop stress vector around the hole and the displacement of the hole
boundary have a simple real form. In general, however, the solutions are in the form of an
infinite series. In Section 6 we introduce the conjugate function through which the solutions
are obtained in closed form directly in terms of the prescribed traction. In the last section,
the rigid inclusion subject to a force and a torque is studied. The rotation of the rigid
inclusion is obtained in the form of a quotient and found to be dependent on the torque

1879



[ER) T. C. T. Ting and GONGPL YaN

only. not on the concentrated force. We are able to prove that the denominator of the
quotient. which also appeared in Hwu and Ting (1989). is non-zero thus assuring the
existence of the solution. When the rigid tnclusion is subject to the concentrated force only.
we found the unexpected result that the traction vector at the surface of the rigid inclusion
is in the direction of the applied force and is a constant when the ellipse becomes a circle.

2. THE STROH FORMALISM

In a fixed rectangular coordinate system x,. i = 1.2, 3, let u. 0,,. &, be, respectively,
the displacement. stress ang strain. The strain—displacement equatioas, the stress—strain
laws and the equations of equilibrium are

8:1 = %(ul‘l-}-z‘/.i)‘ (‘)
6:; = t;kvgi:n (2)
Cr/kx“k..t/ = 0- (3)

where repeated indices imply summation. a comma stands for differentiation and C,,, are
the elastic constants which are assumed to be fully symmetric and positive definite. Assuming
that «,. i = 1,2, 3, depend on x and x, only. the general solution to (3) can be written in
matrix notation as

b

u= Y a,/f(z). I, =x+px 4

ER

in which /,. /5, ... arc arbitrary functions of their argument and p, and a, are the cigenvalues
and cigenvectors of the following eigenrelation :

{Q+p(R+RN+p’Tla=0. 5
In (5}, superscript T stands for the transpose and Q. R, T are 3 x 3 real matrices given by
Qi =Ciis Ri=Ca Typ=Cya (6)
Equation {3) is obtained when we substitute (4) into {3). We see that Q and T are symmetric
and positive definite if the strain energy is positive. Since p, cannot be real if the strain
energy is positive (Eshelby er al., 1953), there are three pairs of complex conjugates for p,.
We let

px+l=ﬁx~ Im(p:)>01 A = lv2.3‘

where an overbar denotes the complex conjugate and Im stands for the imaginary part. We
then have

a4,,=2a,, x2=123
For the displacement u to be real, we let
foox =T 2=123,

and (4) becomcs
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3
u=2 Re{ Y a,f,(:,)}. (N

=1

in which Re stands for the real part.
Introducing the vector

b=(R"+pTa= -—:—)(Q-&-pR)a. (8)

where the second equality comes from (5). the stresses g,, obtained by substituting (4) into
(1) and (2) can be written as

g, = —¢1.2' G, = ¢l.l' (9)

where the vector ¢ is the stress function

¢ = 2Re{ ) b,f,<.-,)}. (10)

and b, is related to a, through (8). More generally, if t is the surface traction at a point on
a curved boundary,

0P
t= o (n

where s is the arclength measured along the curved boundary in the direction such that,
when one faces the direction of increasing s, the material is located on the right-hand side
(Stroh, 1958). We sce that (9) are special cases of (11) when the boundary is a plane parallel
to the x;-axis or the x,-axis.
In many applications including the present one, £, f,, f3 have the same function form
£z = ¢,f(z,), anot summed,
where ¢,, a = 1,2, 3, are arbitrary complex constants. If we introduce the diagonal matrix
() =diag [f (z0). f(22) f(23)].
in which the angular brackets stand for the diagonal matrix, and the 3 x 3 complex matrices
A=[al‘al‘a3]v B=[b|'b27b}]'
egqns (7) and (10) can be written as

u=2Rc{A{f(z))q}. ¢ =2Re{B{f(2))q]. (12)

q being the 3 x | matrix whose clements are ¢, ¢,. ¢;.
The two equations in (8) can be recast in the standard eigenrelation

N¢ =pé. (13)

N, N, IRE
N‘[N, NE]‘ ’[b]‘ (9

N,=-T-'R", N,=T-', N,=RT-'R"-Q. (15)
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We see that N. and N, are symmetric and N, is positive definite. It can be shown (Ting.
1988c¢) that — N is positive semi-definite, and that u and ¢ satisfy the differential equation

(Chadwick and Smith, 1977)
u- LN
[d"::l [d".] (1o

Finally, the following three matrices introduced by Barnett and Lothe (1973)
H = 2AA". L= -2BB". S=i2AB -1, (17

I being the unit matrix. can be shown to be real. Moreover, H and L are symmetric and
positive definite. The three matrices are related by

SH+HS" =0, LS+S'L=0. HL-SS=1. (18a)

S H S H
(sujfs )L

Equations (18a), , imply that SH and LS are antisymmetric. [t is readily shown that H™'S
and SL ' are also antisymmetric.

In the above presentation, we have tacitly assumed that the 6 x 6 matrix N is simple
or semi-simple so that the six eigenvectors § span the six-dimensional space. Modifications
required when N is non-semi-simple can be found in Chadwick and Smith (1977) and Ting
and Hwu (1988). We hasten to add that the real-form solutions presented in this paper do
not contain the cigenvalues p and the eigenvectors & Theretore, these solutions are valid
for non-semi-simple N.

The two-dimenstonal deformation presented here assumes that w,, ¢ = 1, 2, 3, are inde-
pendent of x,. This does not mean that «, vanishes although it does imply that &, = 0.
The deformation is a generalization of plane strain of the isotropic clasticity. The in-
plane displacements «; and «, are coupled with the anti-plane displacement u, due to the
anisotropic property of the material. Therefore, uy, ey, und &4, are in general non-zero.

which can be written as

3. FUNDAMENTAL SOLUTIONS

In an infinite anisotropic elastic material, let the boundary I of an elliptic hole or a
rigid inclusion be given by

X)) =acosy, x.(¥) =hsinyg, (19)

where a, b are the major and minor semi-axis, respectively, and  a real parameter; see
Fig. 1. Consider the mapping

I

m ta
n F: I = acosy’
e I3 = bsiny
9
tm
0
f I
\L_ a

Fig. 1. Geometry of the clliptic hole or the clliptic rigid inclusion.
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5 =60+d0 ", 2not summed, (20)

where ¢,. d, are complex constants. Equation (20) transforms the complex variable -, to a
new complex variable {,. When =, is on the hole boundary [, let {, be on a unit circle, i.e.

Clr =e™ =cosy+isiny. 2n
Substituting (4), and (21) in (20) and using (19). we obtain

¢, = Ya—ip,b).
d, = Ya+ip,b).
The roots of
ds,/dl, =0
are at

d, a+ip,b

I
LI ¥

e, a—iph’

If p.. pi are, respectively, the real and imaginary parts of p,. the absolute value of {, is

_ (ff:fé’”>’f<l{éff}”
IGl = {(f:+'p:h)=+(,;;h)1 <!

because a. b, p; are positive and non-zero. The roots are therefore located inside the unit
circle and transformation (20) is one-to-one outside the hole with {, —= o0 as z, — 0.
Onc of the fundamental solutions for the clliptic hole is to choose

S() =1In¢,

in (12), where (, is related to z, through (20). As in Ting (1986, 1988a, b), we replace the
complex constant q by

q= ATgn"f'BThu.
where g, and h, are real constants. We then have the fundamental solution

u' =2 Re{A{In{>AT}g,+2 Re {AIn C)BT}h(,.} @2

¢' =2 Re {B{In{DAT}go+2 Re {B{In (DB }hy. |

Since In {, is a multi-valued function, we introduce a cut along = 0. Although both u', ¢'
become infinite as z, goes to infinity, the stresses obtained from (9) vanish at infinity.
Another fundamental solution for the hole is to choose

{(2))g =< *)(ATg, +B"h,), & not summed,

in (12). Superimposing the solutions for £ = 1 to infinity, we have

8AS 27:15-8
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W'=2Y Re{A AT}z +2 Y Re (A “)BTlh,,

k=1 ko=t

< - (23)
o' =2 Z Re (B *H>A g, +2 Z Re {B<{*)B"}h,,
k=1 k=1
where g, h,. k = 1.2,..., are real constants. We see that both u' and ¢" approach zero as
=, approaches infinity.
Noticing that

(Ing)le =i, {TKr=e*

and using (17), the values of the fundamental solutions u', ¢'. u", ¢" at I' denoted by
subscript [ are

up = yhy. @ = Y. (29)

uf = Y (h cos kyr — by sin k).

k=i

. (25)
¢t = 3 (& cosky —g sinky).
k=i
In the above, g, b k = 0,1,2,.... are related to g, by, by
h, =Sh,+Hg. g = —Lh +S'g. (26)
or
h] [ S H][h
&l L-L S"]ie
It follows from (18b) that
b = “(Sﬁk+Hgk)~ B = ""(—Lﬁk +S‘rfh)- (27)

Equations (26), (27) allow us to determine &, h, in terms of g, b, and vice versa. If g, and
#, are known, we obtain from (26) and (18a)

hy =L '"(S'&—&). B =L""S"g+g) (28)
If b, and h, are known, (27) and (18a) give
g = —H '(Shy—h,). g = —H™'(Sh+h,). (29)

Thus, if we can determine any two of the four constants g,, h, . h,. the remaining two
are provided by (26), (27), (28) or (29).

4. STRESS ALONG THE HOLE BOUNDARY

Before we present solutions to the problems associated with an elliptic hole, we derive
an explicit real-form expression for the stress along the elliptic hole boundary.
Let p d¢ be the infinitesimal arclength of the hole boundary I” where



Anisotropic elastic solid with elliptic hole or rigid inclusion 1885

p(¥) = (@’ sin® +b* cos? ¢)' 2.
The unit vectors tangential and normal to I' as shown in Fig. | are

' (8) = (cos 8,sin 8. 0).
m’(0) = (—sin 6,cos 6,0), (30)
cosO = (asiny)p™'(¥). sinf= —(bcosy)p™ '(¥). 3n
When the hole is a circle, i.e. when a = b, p(§) = a which is independent of ¢ and

¢ = 0+mn/2. Let t,, be the traction on the hole surface. If n is the arclength of I' measured
in the direction of n, we have by (11).

¢m=ﬁ%¢=_¢,=~wjmﬂn¢ﬁmm. 32)

The sign for t, employed here is opposite of that employed in Hwu and Ting (1989).
Substituting ¢', ¢" from (24),. (25), we have

tn = p " (V). (33)

th=~p ') i k(g sin ki + &, cos k). (34

k=

Likewisc, let t, be the traction on the surface perpendicular to I'; see Fig, 1. If m is the
arclength measured along this surface in the direction of m,

t,= —¢,=¢, sinll~¢,cos 0, (35)
which is the “hoop stress vector™. The hoop stress 1, and the two shear stresses £, £, are
L =40 L, =4 m, Ly =t,¢,, (36)
where e, is the unit vector in the x,-direction, i.e.
el =(0,0,1).

We will present an alternate formula for (35), which avoids differentiation with m,
We generalize the matrices Q, R, T of (6) by
Qik (0) = Cljksnj(O)‘ns(o)v
Rik(g) = Cl;ks"}(o)mx(g)s
T.Ik(e) = Cljhmj (0)'"!(0)’

in which n(0), m(0) are defined in (30). We see that Q(0), R(8), T(0) reduce to Q, R, T of
(6) when 8 = 0. Let

_[Ney N
Nm'hﬂ)ﬂ@

N:(0) = T~'(0), N,(6) = ROT"(ORT(6)—Q(6).

]. N((0) = =T~ "(ORT(D),

They reduce to (14), and (15) when 8 = 0. It is shown in the Appendix that a generalization
of (16) is
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u u
Ti=N®| 7. 7
[4:]-~oly] &

which converts differentiation in the direction n to the direction m. Hence,
¢ = Ni(6),+N;i(O)u,
and, along the hole boundary I,
t, = NI(O)t,, —N;(O)ur,. o (38)

Equation (38) applies to holes of general shape. Two special cases of (38) are worth
emphasizing. Depending on whether the hole is a void or a rigid inclusion, we have

t, = —N(Dur,, fora free surface (39)
t, = Nj(O),. forarigid inclusion. 40)

Equation (39) is obvious. As to (40), we obscrve that the displacement in the rigid inclusion
may have a rigid body translation u, and a rotation w about the x; —axis. Hence

Up = Uy -+ ey XTIy, 41
where rp- is the position vector of a point on . Differentiating along the direction n yields
Up, = @€; XN = wm. 42)
With (42) and the identity (Ting, 1988b)
Ny{)m =0,

(38) leads to (40).
For the elliptic hole under consideration, we write {38) as

\
t, = NI(O)t, + N, (6) —=. @3)
p oy
With ul, ul!, t',, !} presented in (24),. (25),. (33). (34). we have
th=p" !(W){N¥(O)§0+NJ(O)E(»}' (44)

€ = —p  WINTO) ¥, k(g sin kb + cos ky)

kel

—p~ ' (Y)N;(0) i k(hy sin kg +hy cos ky).  (45)

ko i

5. THE HOLE SUBJECT TO PRESCRIBED TRACTIONS

Consider an elliptic hole which is subject to an arbitrarily prescribed traction t(y/) on
" while the stress at infinity vanishes. We let
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u=u+u"'. ¢=¢' +9¢" (46a)

The right-hand sides are given in (22) and (23). Since the displacement must be single-
valued. we see from (24), that we must set

h, =0. (46b)
It follows from this and (26), that g, and h, in (22) are related by
go = - H— lsho.

From (24),, (25),. (33) and (34). the displacement and the traction at I are

ur = i (h, cos ky ~hy sin ky), 47
k=
(W) =p ' (W8o—p ' (¥) Y k(g sin kyy+§; cos ky). (48)
k=1

Equation (48) lcads to

] In
go = > j p)e(y) dy,
T Jo

go= — k'nj' p)e() sinky dy, k> 1, } (49)

l M1
&= - P L p)c()cosky dy, k= 1.

Y

We see that 2m, is the resultant force of =(f) applied at I, With h,, h, determined from
(28), (47) can be written as

ur = —SL™! i (g cos ky —g, sinky)—L"" 2’: (g sin kY + @, cosky),  (50)

k=1 k=1
and the hoop stress vector from (43) is

aUr

t, = NT(O)r(¥) +N,(0) P

This can be rewritten as, using (48) and (50),

t. =G (O)W)+p~ '(¢)G,(0){S’§0+ i k(g cos kg — g sin k'//)}, (51)
kel

where

Gi(0) =N —N;(OSL™', G.(0) = =N,(OL"". (52)

[t is clear that G;(0)L is a symmetric matrix, and so is G,(8)L. The latter follows from
the fact that (Kirchner and Lothe, 1986)
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[N,(m N;(G)j][ S H ]_ [ S H N8 Ny
Ni® N@JL-L ST L-L STJINu® NI@J
G, (8) and G,(0) share the following properties with N,(6) and N,(8). First, they are periodic
in 8 with periodicity . Next. G1(8) and G}(9) satisfy the following identities which are

valid when G} (8) and G (6) are replaced. respectively. by N,(6) and N,(6) (Hwu and Ting,
1989) :

Gl(0m(0) = —n(H). G (Om(H) = 0. (53)

cos (0—0,)G (D) = GT(Hn(8,) —sin (0 —0,)n(0),
sin (0 —0,)GT(O)n(0) = GT(0)m(0,) +cos (8 —0,)n(6).
cos (6 —0,)G3(O)n(0) = GL(O)n(H,).
sin (0 —8,)G3(0)n(0) = G3(H)Hm(8,).

(54)

In (54). 0, is an arbitrary constant. Finally, like N (). G,(0) and G () are dimensionless.
For isotropic materials, they have the expressions

[ sin 20 —-cos20 0
G ()=|—-cos20 —sin20 0],
0 0 0

1 +cos 20 sin 20 0
G,(th =] sin20 I—cos20 0].
0 0 1

-

In the following, we consider three special tractions for t(y).

(i) For a uniform pressure p,
t = pm(0) = p{—n(0) sin 8+ m(0) cos 0},
or, using (31),

t = pp ' (Y){a sin ym(0) +b cos Yyn(0)}.

Comparing this with (48), we have

go=0, g = —pam(0). g, = —phn(0), g =& =0 k>1

Equation (50) yiclds

—-X, (bla)x,
ur = pSL~'|  x\ [+pL~"| (a/b)x, |.
0 0

The hoop stress vector from (51) has the expression

(b/a)cos 8
t, = pG (O)m(0) + pG;(0)| (a/b)sin O |.
0
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(it} For a uniform in-plane shear stress 1, we let
t = w(f) = t{n(0) cos 6+ m(0) sin 6}.

Following the same procedure, we obtain

Xy (a/b)x.
ur = 1SLY| x. j+ L7} —(b/a)x,
0 0
and
—(a/b)sin @
t, = 1G,(0)m(0) —1G,(9) (blaycos 0 |.
0

(i) Consider the special case in which p()r(y) is a constant, i.e.
p()e(¥) = 1]2n, (55)

where fis the total traction force. Equation (49) give us

and (50), (51) reduce to

7;;) WG (0)+G()ST}L.

9!

The fact that up vanishes is not peculiar because we have ignored the rigid body transtation
and rotation of the entire body. What is peculiar here is that the displacement ur is a
constant, which means that the elliptic hole is not distorted. This means that if we fill the
hole with a rigid inclusion and apply a concentrated force f, the traction along the interface
should be given by (55). We will see in Section 7 that this is indeed the case.

(iv) Consider the problem of an elliptic hole subject to a uniform stress ¢,% at infinity
while the surface of the elliptic hole is traction free (Hwu and Ting, 1989). The solution to
this problem can be separated into two parts. The first part is the uniform solution in which
the stress is a5 everywhere. The second part is the “disturbed™ state due to the presence of
the hole. The solution to this part must satisfy the conditions that the stress vanishes at
infinity while at the hole surface the traction t, is 6.5 m,(0). This is precisely the problem we
are considering in this section. We have

Tt = o m(0),
where ¢ * is the stress tensor o75. In particular, if 6, = pd,;, © = pm(0) which is the special
case (i) studied earlier. For general g5, we follow the analysis of case (i) and find that g,.

g, vanish for all k except

g, = —ati, g, = —ht7,

in which
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tr =o°n(0), t¥ =e"m(0).
The displacement ur and the hoop stress vector t, at the hole boundary for the disturbed
state are
b
ur = SL™"(x tf --.r:tf)+L“<—xlt," + ‘—Ix:t:").
a b
. Id a )
t, = G {(8){(tF cos —1t] sin 6)+ G () &t,’* cos ¥+ f;t;‘ sin 8 .

The hoop stress ¢,, for the disturbed state s, using (36),. (53) and (54),

b
Ly = 07(0){(;:(9)*? + ;G;(g)t? }—mT(O){G;((})tT - ng(Q)t?}
—n"(0){tF cos O+t7 sin 0}.

The last term

n"(0){t] cos O+1tF sin 8}

1s identical to the solution for the first part of the homogeneous solution. If we ignore this
term, we obtain the total hoop stress which agrees with that derived in Hwu and Ting
{1989),

6. THE CONJUGATE FUNCTION FOR ARBITRARY TRACTION ()

The special tractions considered at the end of last section are such that the series
solutions (50) and (51) rctain only one term, If the traction (i) is arbitrary, the series
solutions in general retain infinite terms. One can avoid the infinite series if the conjugate
function is employed.

Let a periodic function /(i) be represented by

F) = a,+ Z (a, cos ki + b, sin ki),

k=1

where ay. @, by are constants. The conjugate function of f(), denoted by [f(¥)]". is

U = i (a, sin ki — b, cos kiy).

k=1

It is shown by Bary (1964) that the conjugate function is expressible directly in terms of

f(Y) as
LS+ =/ =1

g 2 tan {¢/2)

vy = - de.

We see from (48) that the conjugate function of p(¥)r(y) is

x |
leW)e(W)]° = 3 k(g cos kY —g, sinky) = — -
ko |

nJjo 212”1 (1/2)

f" PO +NTW+D —pW =Dt ~1)

The hoop stress vector t, of (51) can therefore be written as
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t. = G (O)t(Y) +p ' (W)G(0) S8 + [p(¥)T ()]}

If the hole is a circle, we have

]
t, = G,(0)x(¥)+G,(0) {‘—1 STgo+ [f(lﬁ)]“} .

where a is the radius of the circle.
The displacement ur of (50) at the hole boundary can also be expressed in terms of
t(y). If we differentiate (50) with . we have

adEur =SL™' Y k(gesinky+g cosky)—L™"' Y k(g cos ky — g sin ky)
k=1 ko=

=SL™ g —p()x(¥)} =L '[p() ()]

Hence
v

Y

v
ur(Y) = SL“J‘ {80 —p(N2(n)} dr-L"[ (O] dt +ur(0).

Unfortunately, ur(0) has to be determined from (50). However, since it is a constant, and
since the displacement is unique up to a rigid body translation and rotation, we may ignore
ui-(0).

7. THE RIGID INCLUSION SUBJECT TO A FORCE AND A TORQUE

For the rigid inclusion subject to a resultant force f and a counter-clockwise torque 7,
we employ the same solution (46). From (24) and (295), the displacement and the stress
function at the interface I are

ur = 'i (h, cos ky —h, sin ky), (56)
k=1
b =Yg+ kz (gi cos kyy — g, sin ky). (57
=1

The equilibrium of the inclusion demands that
-J‘t,,, ds+f=0.

Using (11) and (57), we have

ér(0)—¢r(2n)+{ =0,
which yields
go = f/2n. (58)

The rigid inclusion has no deformation but can have a rigid body translation (which
can be taken to be zero) and a rigid body rotation given by

SA8 27:15-¢
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ur = wiacos ym(0) —b sin yn(0)}. (59)

where w is the counter-clockwise rotation of the inclusion. Since the displacement at the
interface I' is continuous, (56) and (59) lead to

h, = awm(0). h, =bwn(0), h, =h, =0. k> 1. (60)
From (29). we have

g, = oH '"{/(0)—aSm(0)}. g, = —wH '{hSn(0)+um(0)}. g =g =0. k> I
(61)

The traction t,, at the interface I is, from (33) and (34).
t, =p '(Y)@o—8i cos Y —g, siny). (62)
To determine the rotation @, we use the condition that the total moment about the

origin due to the traction —t,, and the torque 7 on the rigid inclusion vanmishes. This means
that

r_f' (1 ()m(0) =2 ()n(0)} "t p(§) iy = 0. (63)

Substituting (62) into (63) and using (61) we obtain

w = T/nU, (64)

where

U=bn"(0)H '{hn(0) —uSm(0)} +am"(0)H ' {am(0) +»Sn(0)}
=b'H ) +a*(H ")y +2ab(H'S),,.

In the above, the subscripts outside the parentheses denote the components of the matrix.
We see that the rotation w depends on the torque T only, not on the resultant force f.

The denominator U of w can be shown to be positive and non-zero. Introducing the
complex vector.

U can be rewritten in the form
U=y H '"+H"'S)¥

which is positive and non-zero because (H™'+/H~'S), the impedance matrix (Chadwick
and Smith, 1977 ; Barnett and Lothe, 1985), is a positive definite Hermitian. Therefore w
exists.

Equation (62) can be rewritten as
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,
t, = _}Lp"(qiz)f-— lH' ! {?m(O) sin 8+ -n{0)cos B—Sm(U)}. (65)
2n rlU b a

We see that if T =0, p(¥)t,. is a constant, which agrees with the observation made in
Section 3. For the circular inclusion for which p() = a = b, (65) is simplified to

i
= = — H~ ' (n(0) —Sm(B)". (66)

2na nl/

In particular, if T = 0, the traction vector t,, at the circular interface is in the direction of f
and is a constant. This is a rather unexpected result since no material symmetry has been
assumed.

The hoop stress vector t, is obtained from (40) in which t, is given in (65) for the
elliptic inclusion and in (66) for the circular inclusion.

§. CONCLUDING REMARKS

The real-form solutions obtained here are in terms of the real matrices N,(8). /1 = 1,2.3
and the Barnett-Lothe matrices S, H. L. The matrices N,(f) can be expressed directly in
terms of the elastic constants. The matrices S, H. L, however, require solving the eigen-
relation (13). An alternate integral formalism (Burnett and Lothe, 1973) for S, H, L
avoids solving the eigenrelation but, except for special anisotropic materials, the integration
requires a numerical approximation. Progress has been made recently in this respect.
Explicit expressions for S, H, L are now available for orthotropic materials (Dongyce and
Ting. 1989 ; Chadwick and Wilson, 1990), cubic materials (Chadwick and Wilson, 1990
Chadwick and Smith, 1982) and transversely isotropic materials in which the axis of
symmetry is in the (v, .x;) plane or the (v,, x,) plane (Chadwick, 1989). Recently, Ting
(1991) obtained explicit expressions for 8, H, L. for monoclinic materials for which the
plane of symmetry is at x, = 0.
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APPENDIX

We will derive (37) from (16). From (32), which also applies to u, we have

[u"" B V"Hl u|r +si ”[u_--]
Alb" = o »¢" sn ¢: .

["] (cos 01 + nl)\')‘u'] (AD)
sz (CON SE f .
b, P,

Hencee, usig (16),

Likewise, we obtain from (35),

[;:’] = (—sin Ul +cos (IN)[;'I], (A2)

1t is shown in (4.2) of Ting (1989b) that
(cos Ol +sin ON) ' = fcos Ol ~sin ON(0)}.

Therefore we deduce from (A1), (A2) the relation

u,, . . u,
" = (= sin 01 +cos ONY ! cos 01 —sin ON(1) l[ .
[¢m] ' Lo,

This leads to (37) due to the identity
(—sin 01 +cos ON) {cos 01 —sin ON(0)} = N(¥),

which is obtained by a specialization of the identity (3.5) in Hwu and Ting (1990).



