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Abstract-The two-dimensional problem of an elliptic hole in a solid of general anisotropy subject
to an arbitrarily prescribed traction on the hole surface is studied. Stroh's complex formalism is
adopted here but real-form solutions are obtained for the displacement and the hoop stress around
the hole. For an arbitrarily prescribed traction. the solutions are in the form of an infinite series.
However. through the use of a conjugate function they can be expressed in closed form directly in
terms of the applied traction. We also consider an elliptic rigid inclusion subject to a force and a
torque. Again. real· form solutions are obtained for the interface stress. the hoop stress around the
rigid inclusion and the rotation of the rigid inclusion. When there is no torque applied at the
inclusion. the traction vector at the surface of the rigid inclusion is in the direction of the applied
force and is a constant when the ellipse is a circle. This is an unexpected result since the material
surrounding the rigid inclusion is of general anisotropy.

I. INTRODUCTION

Tht: problem of determining the strt:ss distribution in a solid due to tht: prest:nl:e of a hole
or an indusion has bt:en a matht:matkally intt:rt:sting and ch,dknging problem. It is also
an important problem in applil.:ations. A brit:f aCl.:ount of the history of researl:h on the
subjel.:t was given by Hwu and Ting (19X9). The problem is particularly diflicult to solve
when the material is anisotropic. Among several formulations for anisotropic el'lsticity.
Stroh's formalism (Stroh. 1959. 1962) has bt:t:n proved to be powerful 'Illd elegant in solving
two-dimt:nsional problems (Barnell and Lothe. 1973. 1974. 1975. 1995; Asaro 1.'1 til .• 1973;
Chadwick and Smith. 1977). Recent adv,lnces in the theory allow us to present certain
aspects of the solutions in a real form (Kirchner and Lothe. 1987; Ting. 1986. 1988a. b;
Chadwick. 19lN; Hwu and Ting. 1990; Li and Ting. 19lN; Qu and Li. 1991 ; Suo. 1990).

The probkm of an elliptic inclusion in a solid ofgeneral anisotropy subject to a uniform
loading at infinity was studied by Hwu and Ting (1989). in which the inclusion can be a
void. a rigid inclusion or an anisotropic e1,lstic material different from the matrix. For the
elliptic inclusion. n:al-form solutions arc obtained for the stress inside the inclusion and
around the interface boundary on the matrix. For the elliptic hole and elliptic rigid inclusion.
real-form solutions are obtained for the hoop stress around the hole and the rotation of
the rigid inclusion.

The present paper studies an elliptic hole subject to an arbitrarily prescribed traction
on its surface and an elliptic rigid inclusion subject to a concentrated force and a torque.
New derivations are presented which enable us to obtain the solutions in a simpler form.
In Section 2. Stroh's formalism for two-dimensional anisotropic elasticity is outlined. Of
the several different notations found in the literature. we follow the notation employed in
Ting (1986). Some fundamental solutions which are needed in the present problem are
presented in Section 3. and real-form solutions of these fundamental solutions along the
hole boundary are derived in Section 4. In Section 5. we consider the problem of an elliptic
hole subject to an arbitrarily prescribed traction on the surface of the hole. For certain
special tractions. the hoop stress vector around the hole and the displacement of the hole
boundary have a simple real form. In general. however. the solutions are in the form of an
infinite series. In Section 6 we introduce the conjugate function through which the solutions
are obtained in closed form directly in terms of the prescribed traction. In the last section.
the rigid inclusion subject to a force and a torque is studied. The rotation of the rigid
inclusion is obtained in the form of a quotient and found to be dependent on the torque
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only. not on the concentrated force. We are able to prove that the denominator of the
quotient. which also appeared in Hwu and Ting (1989). is non-zero thus assuring the
existence of the solution. When the rigid inclusion is subject to the concentrated force only.
we found the unexpected result that the traction vector at the surface of the rigid inclusion
is in the direction of the applied force and is a constant when the ellipse becomes a circle.

2. THE STROH FORMALISM

In a fixed rectangular coordinate system X,. i = l. 2. 3. let Uj. CTij • €ij be. respectively.
the displacement. stress anq strain. The strain-displacement equations. the stress-strain
laws and the equations of equilibrium are

(I)

(2)

(3)

where repeated indices imply summation. a comma stands for differentiation and elj'n are
the elastic constants which are assumed to be fully symmetric and positive definite. Assuming
that 11,. i = I. 2. 3. depend on x, and x~ only. the general solution to (3) can be written in
matrix notation as

(.

II = L a,j~(=.). =, = X, +P,x~.
,. I

(4)

in whichf, ../j .... are arbitrary functions of their argument and p, and a, arc the eigenvalues
and eigenvel:tors of the following eigenrdation :

(5)

In (5). superscript T stands for the transpose and Q. R. T arc 3 x 3 real matrices given by

(6)

Equation (5) is obtained when we substitute (4) into (3). We see that Q and T are symmetric
and positive definite if the strain energy is positive. Since p, cannot be real if the strain
energy is positive (Eshelby et 1.1/.• 1953). there are three pairs of complex conjugates for p,.
We let

PH J =P,. 1m (p,) > O. :x = I. 2. 3.

where an overbar denotes the complex conjugate and 1m stands for the imaginary part. We
then have

aHJ = ii,. :x = 1.2.3.

For the displacement II to be real. we let

and (4) becomes
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u = 2 Re { t aJ .(:.)}.
• a I

in which Re stands for the real part.
Introducing the vector

I
b = (RT +pT)a = - -(Q+pR)a.

p

18K1

(7)

(8)

where the second equality comes from (5), the stresses a'l obtained by substituting (4) into
(I) and (2) can be written as

(1'1 = -¢l.:~ (J,2 = rP,.I-

where the vector r/J is the stress function

r/J = 2Re {t bJ,(:.)}.
• - I

(9)

( 10)

and b. is related to a. through (8). More generally. ift is the surface traction at a point on
a curved boundary.

(lr/J
t - ..... ­

- (IS'
( II )

where S is the ardength measured along the curved boundary in the direction such that.
when one faces the direction of increasing s. the material is located on the right-hand side
(Stroh. 195H). We sec that (9) are special c.tses of (II) when the boundary is a plane parallel
to the.\' 2-axis or the x I-axis.

In many applications including the present oneJI J!J3 have the same function form

J:(:.) = "./(:,). 0( not summed.

where '1,.0( = 1.2.3. arc arbitrary complex constants. If we introduce the diagonal matrix

in which the angular brackets stand for the diagonal matrix. and the 3 x 3 complex matrices

eqns (7) and (10) can be written as

u = 2 Re {A(f(:»q}. r/J = 2 Re {B(f(:»q}.

q being the 3 x I matrix whose elements are ql. q2. q).
The two equations in (8) can be recast in the standard eigenrelation

N~ = p~.

( 12)

( 13)

( 14)

( 15)
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We see that N: and ~, are symmetric and ~: is positive definite. It can be shown (Ting.
1988c) that -:"1., is positive semi-definite. and that u and 4J satisfy the differential equation
(Chadwick and Smith. 1977)

[U:] -N[U I
]

4J.: -, 4J. I .

Finally. the following three matrices introduced by Barnett and Lothe (1973)

H = 2iAAT
• L = -2iBB!. S = i(2ABT -I).

( 16)

(17)

I being the unit matrix. can be shown to be real. Moreover. Hand L are symmetric and
positive definite. The three matrices are related by

SH+HST = O. LS+STL = O. HL-SS = L

which can be written as

( 18a)

(18b)

Equations (18a) u imply that SH and LS are antisymmetric. It is readily shown that H - IS
and SL - I are also antisymmetric.

In the above presentation. we have tacitly assumed that the 6 x 6 matrix N is simple
or semi-simple so that the six eigenvectors ~ span the six-dimensional space. Modifications
required when N is non-semi-simple can be found in Chadwick and Smith (1977) and Ting
and Hwu (llJXX). We hasten to add that the real-form solutions presented in this paper do
not contain the eigenvalues I' and the eigenvel:tors ~. Therefore. these solutions arc valid
for non-semi-simple N.

The two-dimension.1I deformation presented here assumes that II" i = 1.2. J. arc inde­
pendent of XI' This docs not mean that II, vanishes although it docs imply that 1:\\ = O.
The deformation is a generalization of plane strain of the isotropil: elastil:ity. The in­
plane displal:ements III and II: arc coupleu with the anti-plane displal:ement 11.1 due to the
anisotropic property of the material. Therefore. 1I.,.l:\I and l;l~ arc in general non·zero.

3. FUNDAMENTAL SOLUTIONS

In an infinite anisotropic elastic material. let the boundary r of an elliptic hole or a
rigid inclusion be given by

( 19)

where (I. h arc the major and minor semi-axis. respectively. and l/J a real parameter; see
Fig. 1. Consider the mapping

XI = aeosl/'
X2 = bsinv'

Fig. I. Geometry or the elliptic hole or the elliptic rigid inclusion.
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:. = c.C. +d.C- I. ~ not summed.

1883

(20)

where c.. d. are complex constants. Equation (20) transforms the complex variable :. to a
new complex variable C.. When :. is on the hole boundary r. let (. be on a unit circle. i.e.

C.lr = eit/l = cos l/I+isin l/I.

Substituting (4)z and (21) in (20) and using (19). we obtain

c. = !(a-ip.h).

d. = Ha+ip.b).

The roots of

d:./dC. = 0

are at

~, d. a+ip.h
(,,------
• - c. - a-ip.h·

If p:. p; arc. respectively. the real and imaginary parts of P•• the absolute v.tlue of ex is

(21 )

because a. h. p; are positive ,tnd non-zero. The roots are therefore located inside the unit
circle and transformation (20) is one-to-one outside the hole with (. ~ 00 as:. ~ 00.

One of the fundamental solutions for the elliptic hole is to choose

/(=.) = In (.

in (12). where (. is related to =. through (20). As in Ting (1986. 1988a. b). we replace the
complex constant q by

where go and ho are real constants. We then have the fundamental solution

ul = 2 Re {A(ln OAT}gll +2 Re {A(ln OBT}h ll ,}

4>1 = 2 Re {B(ln OAT}go+2 Re {B(ln OBT}ho..
(22)

Since In (. is a multi-valued function. we introduce a cut along'" = O. Although both ul, 4>1
become infinite as z. goes to infinity, the stresses obtained from (9) vanish at infinity.

Another fundamental solution for the hole is to choose

in (12). Superimposing the solutions for k = I to infinity. we have

g.\5 :!7: 15-0



T. C. T. TING and GoNGPU VAS

x x )U" = 2 I Re {A<C-4)AT}~ +2 I Re [A<C-t>BT}ht .
t _ 1 k - 1

x x

.;" = 2 I Re{B<C-t>AT}~+2 I Re{B<C-t)BT}hb
t-I t_1

(23)

where ~. hk • k = 1.2....• are real constants. We see that both U" and .;" approach zero as
=. approaches infinity.

Noticing that

and using (17). the values of the fundamental solutions ul• ';1. u". .;" at r denoted by
subscript rare

u~ = t. (h.t cos kt/J -hk sin kt/J). }
k_1

,
.;~ = I (gk cos kt/J -gt sin kt/J).

k-I

In the above. J1:. Ilk. k = O. 1.2•.... arc reia tcd to g.. h.. by

or

It follows from (18b) that

(24)

(25)

(26)

(27)

Equations (26). (27) allow us to determine g.. Ilk in terms of g•• h. and vice versa. If g. and
g. are known. we obtain from (26) and (18a)

(28)

Ifh. and Ilk are known. (27) and (18a) give

(29)

Thus. if we can determine any two of the four constants g.. hb g.. hb the remaining two
are provided by (26). (27). (28) or (29).

4. STRESS ALONG THE HOLE BOUNDARY

Before we present solutions to the problems associated with an elliptic hole. we derive
an explicit real-form expression for the stress along the elliptic hole boundary.

Let {J dt/J be the infinitesimal arclength of the hole boundary r where
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The unit vectors tangential and normal to r as shown in Fig. I are

nT (0) = (cos O. sin 0. 0).

mT (0) = (- sin O. cos 0.0).

cos 0 = (0 sin t/I)p-I(t/I). sin 0 = -(b cos t/I)p-I(t/I).

1885

(30)

(31)

When the hole is a circle. Le. when a = b. p(t/I) = a which is independent of t/I and
t/I = 0 + rc/2. Let tm be the traction on the hole surface. If n is the arclength of r measured
in the direction of n. we have by (II).

tm = p ~t/I 4J = -4J,JI = -(4J.1 cos O+4J.2 sin 9). (32)

The sign for tm employed here is opposite of that employed in Hwu and Ting (1989).
Substituting 4J1. 4J" from (24h. (25h we have

>:;

t~~ = - p- , (t/I) L k(g. sin kt/l +~ cos kt/l).
k.1

(33)

(34)

Likewise. let tn be the traction on the surface perpendicular to r; see Fig. I. If m is the
arclength measured along this surface in the direction of m.

tn= - 4J.m = 4J.1 sin 0- 4J.2 cos O. (35)

which is the "hoop stress vector". The hoop stress Inn and the two shear stresses tnm • tnJ are

(36)

where eJ is the unit vector in the Xl-direction. i.e.

e1 = (0.0.1).

We will present an alternate formula for (35) I which avoids differentiation with m.
We generalize the matrices Q. R. T of (6) by

Qik(O) = C1ik.nj(0)n,(0).

R'k(O) = C1jbnj(O)m,(O).

T1k (8) = C1ik.mJ(O)m,(0).

in which n(O). m(O) are defined in (30). We see that Q(O). R(O). T(O) reduce to Q. R. T of
(6) when 0 =O. Let

N(O) = [N I (0)
Nl(O)

N2(0) = T- 1(0).

N2(0)] _I T
N;(O)' N,(O)=-T (O)R(O).

Nl(O) = R(0)T-1(lJ)RT(lJ)-Q(0).

They reduce to (14)1 and (15) when 0 = O. It is shown in the Appendix that a generalization
of (16) is
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[u.m] =N<t})[u.n].
tP.m tP.n

(37)

which converts differentiation in the direction n to the direction m. Hence.

and. along the hole boundary r.

(38)

Equation (38) applies to holes of general shape. Two special cases of (38) are worth
emphasizing. Depending on whether the hole is a void or a rigid inclusion. we have

tn = - NJ (O)ur.n' for a free surface

tn = NT (OHm. for a rigid inclusion.

(39)

(40)

Equation (39) is obvious. As to (40). we observe that the displacement in the rigid inclusion
may have a rigid body translation Uo and a rotation (I) about the X.I - axis. Hence

ur = Uo + we.1 X rr. (41 )

where rr is the position vector or a point on r. Differentiating along the direction n yields

Ur.n = weI x n = wm.

With (42) and the identity (Ting. 1988b)

NI(O)m = O.

(38) leads to (40).
For the elliptic hole under consideration. we write (38) as

With u~. u~. t~". t!,: presented in (24),. (25),. (33), (34), we have

'"
t~l = -p"(r/I)NT(O) L k(2.t sinkr/l+Jl. coskr/l)t-,

(42)

(43)

(44)

."
-p-l(r/I)NJ(O) L k(htsinkr/l+htcoskr/l). (45)

k_ I

S. THE HOLE SUBJECT TO PRESCRIBED TRACTIONS

Consider an elliptic hole which is subject to an arbitrarily prescribed traction 'C(r/I) on
r while the stress at infinity vanishes. We let
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(46a)

The right-hand sides are given in (22) and (23). Since the displacement must be single­
valued, we see from (24) I that we must set

ho = o.

It follows from this and (26) I that go and ho in (22) are related by

From (24) .. (25) I, (33) and (34), the displacement and the traction at rare

x

Ur = L (hk cos kl/l-hk sin kl/l).
k-I

x

~(l/I) = p - I (l/I)go - p - 1(l/I) L k(gk sin kl/l +gk cos kl/l).
k-I

Equation (48) leads to

(46b)

(47)

(48)

k ~ I,

k~1.

(49)

W~ s~~ that 27tgo is th~ r~sultant force of t"(l/I) applied at r. With hk , hk determined from
(28), (47) can be written as

.J.. -L.

Ur = -SL- ' L (gkcoskl/l-gksinkl/l)-L-' L (~sinkl/l+~coskl/l)' (50)
k - I k - I

and the hoop stress vector from (43) is

This can be rewritten as. using (48) and (50),

t. =GI(O)~(l/I)+p-I(l/I)G)(O){STgo+f k(~COSkl/l-Lsinkl/l)}. (51)
k-I

where

(52)

(t is clear that G)(O)L is a symmetric matrix. and so is G ,(9)L. The latter follows from
the fact that (Kirchner and Lothe. 1986)



T. C. T. TISG and GoSGPl: YA~

G 1(0) and G )(8) share the following properties with N I(8) and N)(8). First. they are periodic
in fJ with periodicity rr. Next. GT(fJ) and G;(fJ) satisfy the following identities which are
valid when G; (fJ) and G; (fJ) are replaced. respectively. by N l(fJ) and N )(fJ) (Hwu and Ting.
1989) :

G;(fJ)m(O) = -n(fJ). G;(fJ)m(fJ) = O.

cos (O-Oo)Gf(O)n(O) .= G;(fJ)n(80)-Sin(0-00)n(o).}
sin (fJ - Oo)G; (O)n(fJ) = GT (8)m(00) +cos (0 - Oo)n(O).

cos (O-Oo)GI(O)n(O) = G;(O)n(fJo).

sin (fJ-Oo)GHfJ)n(fJ) = G1(0)m(Oo).

(53)

(54)

In (54), 00 is an arbitrary constant. Finally. like N 1(0). G,(O) and G.1(0) are dimensionless.
For isotropic materials. they have the expressions

[ sin 20 -cos 20 nG ,(I) = - c~s 20 -sin 20

0

[I +COS 2/1 sin 20

HG1(O) = Sino20 1-cos 20

0

In the following. we consider three special tractions for t(I/J).

(i) For a uniform pressure p.

t = pm(O) = p{ - n(O) sin 0 +m(O) cos O}.

or, using (31 l.

t = pp- 1(I/J){a sin I/Jm(O) +b cos I/Jn(O)}.

Comparing this with (48). we have

go = O. g, = -pam(O). gl = -pbn(O), ~ = ~ = O. k> 1.

Equation (50) yields

Thc hoop stress vector from (51) has the expression

[

(bla) cos 0]
t" = pG I (O)m(O) +pG )(0) (alb)oSin 0 .
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(ii) For a uniform in-plane shear stress r. we let

t = rn(O) = .{n(O) cos fJ+m(O) sin O}.

Following the same procedure. we obtain

and

(iii) Consider the special case in which p(l{I)t(l{I) is a constant. i.e.

p( l{I )t( l{I) = f/21[.

where f is the total traction force. Equation (49) give us

• 1 f
~n = in .

J:. = J.1. = O. k ~ I.

,lnd (50). (51) reduce to

Ur = O.

(55)

The fact that Ur vanishes is not peculiar because we have ignored the rigid body translation
and rotation of the entire body. What is peculiar here is that the displacement Ur is a
constant. which means that the elliptic hole is not distorted. This means that if we fill the
hole with a rigid inclusion and apply a concentrated force f. the traction along the interface
should be given by (55). We will see in Section 7 that this is indeed the case.

(iv) Consider the problem of an elliptic hole subject to a uniform stress a,~ at infinity
while the surface of the elliptic hole is traction free (Hwu and Ting. 1989). The solution to
this problem can be separated into two parts. The first part is the uniform solution in which
the stress is a'i everywhere. The second part is the "disturbed" state due to the presence of
the hole. The solution to this part must satisfy the conditions that the stress vanishes at
infinity while at the hole surface the traction " is a,j n1J{O). This is precisely the problem we
are considering in this section. We have

t = (J'''m{O).

where (J'r. is the stress tensor a"(;. In particular. if a,j = pJ,j' t = pm{O) which is the special
case (i) studied earlier. For general a,7. we follow the analysis of case (i) and find that ~.
11 vanish for all k except

in which
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tf = (1"0(0). t~ = (1 "m(O).

The displacement Or and the hoop stress vector t~ at the hole boundary for the disturbed
state are

The hoop stress I~~ for the disturbed state is. using (36) ,. (53) and (54).

Inn = nT(O){GI(O)t~ + ~G)(9)tf }-mT(O){GI(O)tf - ~G}(9)t~}

-nT(O){t~· cos O+tf sin O}.

The last term

is identical to the solution for the first part of the homogeneous solution. If we ignore this
term. we obtain the total hoop stress which ,Igrees with thut derived in Hwu and Ting
(1989).

6. THE CO!'lOJUGATE FUNCTION FOR ARBITRARY TRACTION t(t/Jl

The special tractions considered at the end of (,1st section arc such that the series
solutions (50) and (51) retain only one term. If the tr,lction t(I/1) is arbitrary. the series
solutions in general retain infinite terms. One can avoid the infinite series if the conjugate
function is employed.

Let a periodic functionf(I/I) be represented by

f(I/I) = (/0+ L (lh coskl/l+hk sinkl/l).
k-l

where au. a.. bk are constants. The conjugate function o1'I(I/I). denoted by U(I/I)j". is

..
U(I/IW = L (ak sin kl/l -hk cos kl/l).

k-l

It is shown by Bary (1964) that the conjugate function is expressible directly in terms of
I(I/I) as

U(I/I)jC = _ ~ r" 1(1/1 + I) -/(1/1 - I) d/.
lT Jo 2 tan (//2)

We see from (48) that the conjugate function of p(I/I)1:(I/I) is

"" . . II" p(l/l + t)t(I/I + t) - p(I/I - t)1:(1/1 - I)[p(I/I)t(I/I)]" = L k(~ cos kl/l-~ SIO kl/l) = - .. -- _.... .,.- d/.
k _ I lT 0 2 tan (t/2)

The hoop stress vector t n of (51) can therefore be written as
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If the hole is a circle. we have

IR9l

where a is the radius of the circle.
The displacement Ur of (50) at the hole boundary can also be expressed in terms of

-r(l/J). If we differentiate (50) with l/J. we have

d~J,ur=SV' I. k(~sinkl/J+~coskl/J)-L-' t k(~coskl/J-iKsinkl/J)
'I' k _ I k _ 1

= SL - I {go - p(l/J)-r(l/J)} - L - 1(p(l/J)-r(l/J)]c.

Hence

udl/J) = SL- I f'" {go - p(t)-r(t)} dt - L - I f'" (p(t)-r(t)]C dt + udO).
o 0

Unfortunatcly. ur(O) has to be determined from (50). However. since it is a constant. and
since the displacement is unique up to a rigid body translation and rotation, we may ignore
u['(O).

7. TilE RIGID INCLUSION SUBJECT TO A FORCE AND A TORQUE

For the rigid inclusion subject to a resultant force f and a counter-clockwise torque T.
we employ the same solution (46). From (24) and (25), the displacement and the stress
function at the interface rare

""
Ur = L (hkcos kl/J -ilk sin kl/J),

k-I

"
rfJr = l/Jgo + L (gk cos kl/J -gk sin kl/J).

k-l

The equilibrium of the inclusion demands that

-itm ds +f =O.

Using (II) and (57), we have

rfJr(O) - rfJr(21t) + f = O.

which yields

go = f/27[.

(56)

(57)

(58)

The rigid inclusion has no deformation but can have a rigid body translation (which
can be taken to be zero) and a rigid body rotation given by

S.\S ":!1:1'5-17
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Ur = w{a cos l/Im(O) - h sin l/In(O)}. (59)

where w is the counter-clockwise rotation of the inclusion. Since the displacement at the
interface r is continuous. (56) and (59) lead to

hi = awm(O). hi = bwn(O). hk =hk = O. k> I.

From (29). we have

(60)

(61 )

The traction t", at the interface r is. from (33) and (34).

(62)

To determine the rotation w. we usc the condition that the total moment about the
origin due to the traction - t,. and the torque T on the rigid inclusion vanishes. This means
that

Substituting (62) into (63) and using (61) we obtain

w = T/nU.

where

U = bnl(O)H I {hn(O) -aSm(O)} + amr(O)H I {am(O) + hSn(O)}

= b~(H -1)11 +a2(H~ Ih2+2ab(H~IShl'

(63)

(64)

In the above. the subscripts outside the parentheses denote the components of the matrix.
We see that the rotation w depends on the torque T only. not on the resultant force f.

The denominator U of w can be shown to be positive and non·zero. Introducing the
complex vector.

[
-ib]

Y = a •

o

U can be rewritten in the form

which is positive and non·zero because (H - I+ iH - IS). the impedance matrix (Chadwick
and Smith. 1977; Barnett and Lothe. 1985). is a positive definite Hermitian. Therefore w
exists.

Equation (62) can be rewritten as
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I T {a h }t", = -p -I (t/I)f - - H - I h-m(O) sin 0+ - nCO) cos O-Sm(O) .
21t 1tU a

tK93

(65)

We see that if T = O. p(t/I)t", is a constant. which agrees with the observation made in
Section 5. For the circular inclusion for which p(t/I) = a = h. (65) is simplified to

I T H If (} S illt =-f- ~- -.n()- m(u)·
m 21tu 1tU. J •

(66)

In particular. if T = O. the traction vector t", at the circular interface is in the direction of f
and is a constant. This is a rather unexpected result since no material symmetry has been
assumed.

The hoop stress vector tn is obtained from (40) in which t", is given in (65) for the
elliptic inclusion and in (66) for the circular inclusion.

8. CONCLUDING REMARKS

The real-form solutions obtained here are in terms of the real matrices N,(O). i = I. 2. 3
and the Barnett-Lothe m.ttrices S. H. L. The matrices ('\,(0) can he expressed directly in
terms of the elastic constants. The matrices S. H. L. however. require solving the eigen­
relation (13). An alternate integral formalism (Barnett and Lothe. 1973) for S. H. L
avoids solving the eigenrelation but. except for special anisotropic m.tterials. the integration
requires a numerical approximation. Progress has heen made recently in this respect.
Explicit expressions for S. II. L arc now available for nrthotropic materials (Dongye and
Ting. 19S9; Chadwick and Wilson. 1990). cuhic materials (Chadwick and Wilson. 11)90;
Chadwi<;k and Smith. 19S2) and transversely isotropi<; materials in which the axis of
symm<;try is in the (XI'X~) plane or the (xj.xd plane (Chadwick. 19S9). Recently. Ting
(1991) ohtained expli<;it expressions for S. II. L for monoclinic materials for which the
plane of symmetry is at Xl =O.

.·lck"OIl·/,·di/l'II/I·"/S-The work presenled here is supported by the U.S. Army Resc:an:h Olliee through grant
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REFERENCES

Asaro. R. 1.. Hirth. J. P.• Barnell. D. M. and Lothe. J. (1973). A further synthesis of sextie .wd illlegraltheories
for disloe'lIions and line forces in anisotropic media. Phys. Stt/IlIS Solidi B 60. 2bl 271.

Barnell. D. M. and Lothe. J. (1973). Synthesis of the scxtic and the integral formalism for dislocations. Greens
function and surface waves in anisotropic elastic solids. Phy.~. Nil,,'. 7. 13,·19.

Barnell. D. M. and Lothe, J. (1l)74). An image force theorem for dislo<:alions in anislltwpic biaystals. 1. Phy.v.
F.4.16IK-1635.

Barnell. D. M. anu Lothe. J. (1975). Line: force loadings on anisotropic half-spaces and wedges. Phn. NOTl'. 8.
1322.

Barnell. D. M. and Lothe. J. (l9115). Free surface (Rayleigh) waves in anisotropic dastic half.spaces: The surface
impedance methods. Proc. R. Soc. Londotl A 402. 135-·152.

Bary. N. K. (1964). A Tn'mi.\·" Otl Trigonom,'tr;e S,'rit's, pp. 51 -52. Macmillan. :'I:ew York.
Chadwick, P. (19Kl)). Wave propagation in transversely isotropic dastic media. I. Homogeneous plane wavcs. II.

Surface waves. III. The slX'Cial case II, = 0 and the ine~tensible limit. Pro... R. Soc LII11111111 .-1422. 23 121.
Chadwick. P. and Smith. G. D. (1977). Foundations of the theory of surface waves in anisotropic clastic materials.

Ade Appl. M"ch. 17.303376.
Chadwick. P. and Smith. G. D. (19K2). Surface waves in cubic clastic materials. In ,1,/(,clWllics of Solick TIlL'

ROIltll'Y Ifill 60th Annin'nary Volume (Edited by II. G. Hopkins and M. J. Sewell). PI'. ·17 ·100. Pergamon.
O~ford.

Chadwick. P.•Ind Wilson. N. J. (19<)1). The behaviour or clastic surf..ce waves polari/cd in a pbne of mated.1I
symmetry. II. Monoclinic media. II. Orthotropic ill1d cubic media. to appear.

Dongye. r. and Ting. T. C. T. (1989). Explicit expressions of Barnell Lothe tensors and their associated tensors
for orthotropic materials. Q. Appl. Ma/h. 47. 723 ·734.

Eshelby. J. D.• Read. W. T. and Shockley. W. (1953) Anisotropicclasticity with applications to dislocation theory.
.-few M"«/lfurqiea 1.251 -259.

Hwu. C. and Ting. T. C. T. (1989). Two-dimensional problems of the anisotropic clastic solids with an elliptic
inclusion. Q. J. Mah. ..11'1'1. Math. 42. 553-572.

Hwu. C and Ting. T. C. T. (1990). Solutions for the anisotropic clastic wedges at critical wedge angles. J. Elasticity
24.120.



181J4 T. C. T. TI:"G and GO!'OGi'l' YA:"

Kirchn.:r. H. 0 K. and Loth.:. 1. (11J!!ol On th.: r.:dundancy of th.: 'oj matriX of anisotropic elasticity. Phi/. .\fu,!
A 53. L7 -lI0

Kirchner. H. O. K. and Loth.:. 1. (11J87). Displac.:m.:nts and tractions along int.:rfaces. Phd. J/a,! A 56. 58J­
594.

Li. Q. and Ting. T. C T. (11J8IJ,. Line inclusions in anisotropic dastlc solids. J. App/. Jlec'h. 56. 556-563.
Qu.1. and Li. Q. (1IJIJIl. Interfacial dlslocatiun and Its application tu mt.:rfac.: crack in anisotropic mat':rials. 1.

Elastic/II. 23. In press.
Stroh. A. :". (1958l. Dislocations and cracks in anisotropic elasticity Phil..\fu,!. 3. 6~~-646.
Stroh. A :". (196~) Steady state problems in anisutroplc elasticity J..\fulh. Phrs. 41, 77-103.
Suo. Z. (11J1J0). Smgularities. mterfaces and cracks in dissimilar anisotropic media. Pmc. R. Soc. London A 427.

331-358.
Ting. T. C T. (198~). Effects of change of reference wordinates on the stress analyses of anisotropic elastic

materials. Int. J. SolidI' Slruclures 18. 139-15~.

Ting. T. C T. (1986). Explicit solution and invariance of the singularities at an interface crack in anisotropic
composites. Int. J. Solids Slruclures 22. 965-9li3.

Ting. T. C T. (11J88a). Line forces and dislocations in anisotropic elastic composite wedges and spaces. Phys.
SIalus Solidi B 146. 81-90.

Ting. T. C T. (1988b). The anisotropic clastic wedge under a concentrated couple. Q. J. Mech. Appl. Malh. 41.
563-578.

Ting. T. C T. (11J88c). Some identities and the structure of N, in the Stroh formalism of anisotropic elasticity. Q.
App!. .\falh. 46. IOIJ-I ~O.

Ting. T. C T. (1991). Barnell-Lothe tensors and their associated tensors for monoclinic materials with the
symmetry plane at x, = O. J. Elaslicily 24. In press.

Ting, T. C. T. and Hwu, C. (198!!). Scxtic formalism m anisotropic elasticity for almost non-semisimple matrix
N. Inl. J. SolidI SlrUClure.1 24. 65-76.

APPENDIX

We will derive (.17) from (16). From (.1~), which also applies tIl u. we h;lve

[ u" I IU I 1 [u 'l= cos II . + sinil' .
,p" .'" 1- "',

llence, uSln/: (I Ill.

[' 1 [' JUN _ U 1

,
." (cos III I- "nIlN) .

"'''''''.
Likewise, we "ht;lIn from (.15),

[u"'J' ,[u 1J= (-Sill III + cos liN) .
.p", ~,

It is shown in (4~) of Ting (llJ8lJh) that

(cos III +sin ON) I [cos U1-sin ON(II):.

Therefore we deduce from (AI), (A~) Ihe rcl;llion

[
U", ] = (_ sin 01 +cos IIN):cos 111- sin liN (II) : [u "J.
"'''' ,p"

This lealls 10 (37) due to the identity

(-sin OI+cosON)[coslll-sin ON(Ol} = NU)),

which is obtain.:d by a specialization of lh~ id~nlily (3.5) in IIwu and Ting (llJl)().

(AI)

(A~)


